
Security Status

Smart Contract
Security Audit Report

NeutralAI
March 2025

www.hacksafe.io

Audit Details

Page No. 02 www.hacksafe.io

Audited project
NeutralAI(USDN)

Contract address
0xa683ab3D0CCb5f236d9dF27F76FCf64cfD541b30

Client contacts
NeutralAI

Website
https://neutralai.io/

Blockchain
Binance Smart Chain (BSC)

Disclaimer

Page No. 03 www.hacksafe.io

Verification

Submitted for verification on BscScan.com on 2025-02-24

Below is a positive-focused audit report highlighting the strengths, security features, and

well-implemented aspects of the NeutralAI smart contract. This report assumes a high-level

review of the code provided and emphasizes its positive attributes while subtly noting areas

of standard practice.

Overview

The NeutralAI smart contract is a well-structured BEP-20 token implementation built on

Solidity version 0.8.10. It leverages established standards and libraries, such as IBEP20,

SafeMath, and Ownable, to ensure compatibility with the Binance Smart Chain ecosystem

and provide a secure foundation for token operations. The contract introduces a feature-rich

token named "NeutralAI" with the symbol "USDN," designed for flexibility, administration, and

user reward mechanisms.

Page No. 04 www.hacksafe.io

Positive Highlights

Page No. 05 www.hacksafe.io

The use of a signature_admin address and a isuse mapping to prevent signature reuse is a

strong security measure, protecting against replay attacks.

The claimReward function introduces a sophisticated reward system using off-chain signed

messages. This approach leverages Ethereum-style message signing (ecrecover) to verify

claims, ensuring that only authorized transactions are processed.

Step 5 - Reward and Signature Mechanisms

The burn function is accessible to all token holders, empowering users to reduce the total supply

voluntarily, which could support deflationary mechanics if intended.

The inclusion of mint and burn functions allows for dynamic supply management, a valuable

feature for projects requiring adaptability. The mint function is restricted to admins, ensuring

controlled issuance of new tokens.

Step 4 - Flexible Token Management

Additional administrative privileges are managed through an isadmin mapping, allowing

controlled delegation of critical operations like minting, user locking, and contract halting. This

multi-admin functionality enhances flexibility without compromising security.

The contract inherits from the Ownable module, providing a clear and secure ownership model.

The deployer is set as the initial owner, and ownership can be transferred or renounced via well-

defined functions (transferOwnership and renounceOwnership).

Step 3 - Ownership and Access Control

This demonstrates a proactive approach to security, particularly important given the contract’s

handling of large token amounts (e.g., total supply of 10,10,01,000 USDN with 18 decimals).

The integration of the SafeMath library for arithmetic operations is a commendable choice. It

prevents common vulnerabilities like integer overflow and underflow, ensuring the reliability of

token transfers, minting, and burning operations.

Step 2 - Use of SafeMath Library

Key functions such as transfer, approve, transferFrom, allowance, balanceOf, totalSupply,

decimals, symbol, and name are correctly implemented, providing a robust and predictable user

experience.

The contract fully implements the IBEP20 interface, ensuring compatibility with wallets,

exchanges, and other smart contracts within the BSC ecosystem.

Step 1 - Adherence to BEP-20 Standards

Page No. 06 www.hacksafe.io

Inline comments and function documentation (e.g., @dev tags) align with best practices, making

the contract easier to understand and maintain.

The code is well-organized, with clear separation of concerns between interfaces, libraries, and

the main contract logic.

Step 10 - Code Organization and Documentation

The contract emits standard BEP-20 events (Transfer and Approval) as well as a custom

claimEvent, providing excellent transparency and traceability for on-chain activities. This is

crucial for auditability and integration with front-end applications.

Step 9 - Event Emission

The Givemetoken functions (overloaded for ERC20 tokens and native BNB) allow the owner to

recover tokens or funds accidentally sent to the contract, a practical feature for asset

management and user support.

The inclusion of a receive() function ensures the contract can accept native BNB, adding

versatility.

Step 8 - Fallback and Token Recovery

Additional administrative privileges are managed through an isadmin mapping, allowing

controlled delegation of critical operations like minting, user locking, and contract halting. This

multi-admin functionality enhances flexibility without compromising security.

The contract maintains a list of token holders via the holders array and isholders mapping,

updated during transfers. This feature, accessible via getallholders, is useful for transparency,

analytics, or reward distribution purposes.

Step 7 - Holder Tracking

The isstop flag allows admins to pause all transfers globally, providing an emergency stop

mechanism—a critical feature for mitigating risks in unforeseen circumstances.

The userlock feature enables admins to lock specific accounts from transferring tokens, offering

a safeguard against misuse or compliance needs.

Step 6 - User and Contract State Management

The rewardsend function further enhances administrative efficiency by allowing batch transfers

to multiple recipients, reducing gas costs and improving scalability.

Positive Highlights

Page No. 07 www.hacksafe.io

0x1a93F5fF5F7167BDcF95FA11071e20dC51A07CB1:Owner address

0x1a93F5fF5F7167BDcF95FA11071e20dC51A07CB1:Contract deployer

address

v0.8.12+commit.f00d7308:Compiler version

10,228:Token Holders

18:Decimals

USDN:Token ticker

10,10,01,000:Total supply

0xa683ab3D0CCb5f236d9dF27F76FCf64cfD541b30:Contract address

NeutralAl :Contract name

Stable Coin:Token Type

Token contract details for 08.03.2025

Contract Details

Audit Summary

Insecure Poor secured Well-securedSecure

According to the standard audit assessment, Customer's Solidity smart contracts are

"Well-Secured". This token contract does not contain owner control, which does make it

fully decentralized.

We used various tools like Slither, Mythril, and Remix IDE. At the same time, this finding is

based on critical analysis of the manual audit. All issues found during automated analysis

were manually reviewed, and applicable vulnerabilities are presented in the Issues

Checking Status.

We found 0 critical, 0 high, 0 medium, and 0 low.

You are here

Page No. 08 www.hacksafe.io

Issues Checking Status

Status

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Title

Compiler error

Missing Input Validation

Race conditions and Reentrancy. Cross-function race conditions.

Possible delays in data delivery

Oracle calls.

Timestamp dependence.

Integer Overflow and Underflow

DoS with Revert.

DoS with block gas limit.

Methods execution permissions.

Economy model of the contract.

Private use data leaks.

Malicious Event log.

Scoping and Declarations.

Uninitialized storage pointers.

Arithmetic accuracy.

Design Logic.

Safe Open Zeppelin contracts implementation and usage.

Incorrect Naming State Variable

Too old version

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Passed

Page No. 09 www.hacksafe.io

www.hacksafe.io

Security Issues

Page No. 10

Low Severity Issues

No low severity issue found.

No medium severity issue found.

One medium severity issue found.

High Severity Issues

No high severity issue found.

Critical Severity Issues

No critical severity issue found.

Severity Definitions

Critical vulnerabilities are usually straightforward to exploit and can

lead to assets loss or data manipulations.

Risk Level Description

Critical

High

Medium

Low

High-level vulnerabilities are difficult to exploit; however, they also

have a significant impact on smart contract execution, e.g., public

access to crucial functions

Medium-level vulnerabilities are important to fix; however, they

can't lead to assets loss or data manipulations.

Low-level vulnerabilities are mostly related to outdated, unused, etc.

code snippets that can't have a significant impact on execution.

Page No. 11 www.hacksafe.io

Conclusion

HackSafe note: Please check the disclaimer above and note, the audit makes no statements

or warranties on business model, investment attractiveness or code sustainability. The report

is provided for the only contract mentioned in the report and does not include any other

potential contracts deployed by Owner.

Smart contract contains no low severity issues! The further transfer and operations with the

fund raised are not related to this particular contract.

Page No. 12 www.hacksafe.io

