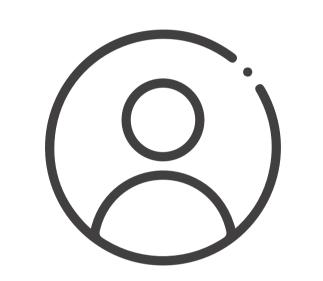


Smart Contract Security Audit Report

BOT April 2023



Audit Detdis

Audited project BOT

Deployer address 0xd1E78C9D59746C4f9673038B45fAA999e586Ab75

Client contacts

BOT team

Binance smart chain

Website Not Provided

Page No. 02

Disc dimer

This is a limited report on our findings based on our analysis, in accordance with good industry practice as at the date of this report, in relation to cybersecurity vulnerabilities and issues in the framework and algorithms based on smart contracts, the details of which are set out in this report. In order to get a full view of our analysis, it is crucial for you to read the full report. While we have done our best in conducting our analysis and producing this report, it is important to note that you should not rely on this report and cannot claim against us on the basis of what it says or doesn't say, or how we produced it, and it is important for you to conduct your own independent investigations before making any decisions. We go into more detail on this in the below disclaimer below – please make sure to read it in full.

DISCLAIMER: By reading this report or any part of it, you agree to the terms of this disclaimer. If you do not agree to the terms, then please immediately cease reading this report, and delete and destroy any and all copies of this report downloaded and/ or printed by you. This report is provided for information purposes only and on a nonreliance basis, and does not constitute investment advice. No one shall have any right to rely on the report or its contents, and TechRate and its affiliates (including holding companies, shareholders, subsidiaries, employees, directors, officers and other representatives) (HackSafe) owe no duty of care towards you or any other person, nor does HackSafe make any warranty or representation to any person on the accuracy or completeness of the report. The report is provided "as is", without any conditions, warranties or other terms of any kind except as set out in this disclaimer, and HackSafe hereby excludes all representations, warranties, conditions and other terms (including, without limitation, the warranties implied by law of satisfactory quality, fitness for purpose and the use of reasonable care and skill) which, but for this clause, might have effect in relation to the report. Except and only to the extent that it is prohibited by law, HackSafe hereby excludes all liability and responsibility, and neither you nor any other person shall have any claim against HackSafe, for any amount or kind of loss or damage that may result to you or any other person (including without limitation, any direct, indirect, special, punitive, consequential or pure economic loss or damages, or any loss of income, profits, goodwill, data, contracts, use of money, or business interruption, and whether in delict, tort (including without limitation negligence), contract, breach of statutory duty, misrepresentation (whether innocent or negligent) or otherwise under any claim of any nature whatsoever in any jurisdiction) in any way arising from or connected with this report and the use, inability to use or the results of use of this report, and any reliance on this report.

The analysis of the security is purely based on the smart contracts alone. No applications or operations were reviewed for security. No product code has been reviewed.

Page No. 03

Procedure

Step 1 - In-Depth Manual Review

Manual line-by-line code reviews to ensure the logic behind each function is sound and safe from various attack vectors. This is the most important and lengthy portion of the audit process (as automated tools often cannot find the nuances that lead to exploits such as flash loan attacks).

Step 2 - Automated Testing

Simulation of a variety of interactions with your Smart Contract on a test blockchain leveraging a combination of automated test tools and manual testing to determine if any security vulnerabilities exist.

Step 3 – Leadership Review

The engineers assigned to the audit will schedule meetings with our leadership team to review the contracts, any comments or findings, and ask questions to further apply adversarial thinking to discuss less common attack vectors.

Step 4 - Resolution of Issues

Consulting with the team to provide our recommendations to ensure the code's security and optimize its gas efficiency, if possible. We assist project team's in resolving any outstanding issues or implementing our recommendations.

Step 5 - Published Audit Report

Boiling down results and findings into an easy-to-read report tailored to the project. Our audit reports highlight resolved issues and any risks that exist to the project or its users, along with any remaining suggested remediation measures. Diagrams are included at the end of

each report to help users understand the interactions which occur within the project.

HackSafe was commissioned by BOT to perform an audit of smart contracts:

https://bscscan.com/token/0x29E3cBDd0375e17cA94677790779EB0A87BefbCC#code

The purpose of the audit was to achieve the following:

- Ensure that the smart contract functions as intended.
- Identify potential security issues with the smart contract.

The information in this report should be understand the risk exposure of the smart contract, and as a guide to improve the security posture of the smart contract by remediating the issues that were identified.

Contract Details

Token contract details for 05.04.2023

Туре

: DAFI

Contract address	: 0x29E3cBDd0375e17cA94677790779EB0A87BefbCC
Total supply	: 200,000,000
Token Ticker	: BOT
Decimals	: 18
Token Holders	: 224
Transactions count	: 267
Compiler version	: v0.8.6+commit.11564f7e

Contract deployer : 0xd1E78C9D59746C4f9673038B45fAA999e586Ab75 address

Owner address : 0X37639278e703c68c2c21effcf42279bad5c1957e

Audit Summary

According to the standard audit assessment, Customer`s solidity smart contracts are **"Secure".** This token contract does contain owner control, which do not make it fully decentralized as owner does have control over smart contract.

Insecure

Poor secured

Secure

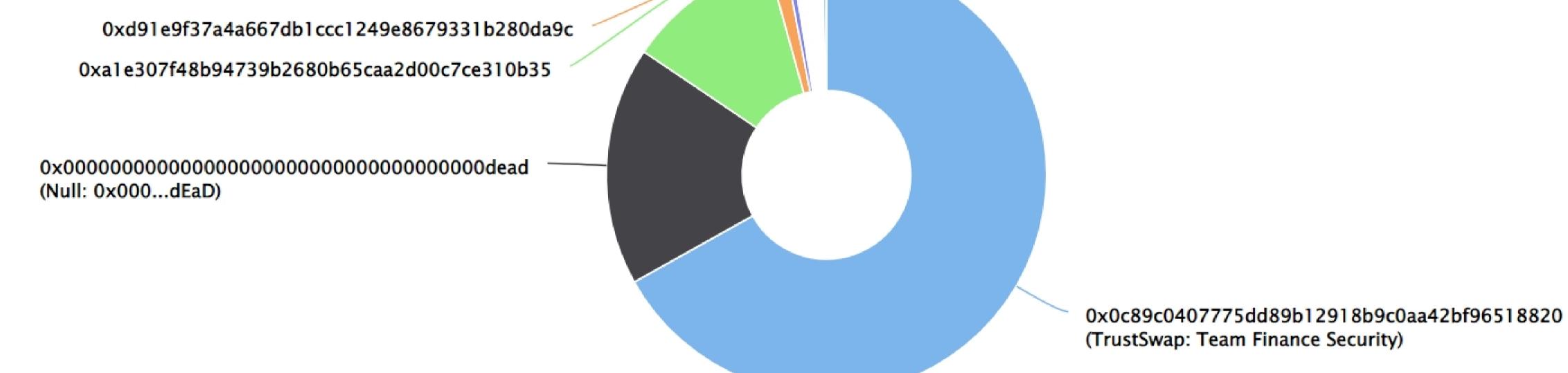
We used various tools like Slither, Mythril and Remix IDE. At the same time this finding is based on critical analysis of the manual audit. All issues found during automated analysis were manually reviewed and applicable vulnerabilities are presented in the issues checking status.

We found 0 critical, 0 high, 1 medium and 0 low and some very low-level issues. These issues are not critical ones.

BOT Token Distribution

♀ The top 100 holders collectively own 99.76% (199,523,723.34 Tokens) of BOT

Token Total Supply: 200,000,000.00 Token | Total Token Holders: 224


BOT Top 100 Token Holders

Source: BscScan.com

OTHER ACCOUNTS

0x421e3d37060e6a417a4415474dca5f1b78ce8583

0x6e1a95bfc89539237d5a7873c511fc2cd078fb5c

BOT Token Top 20 Token Holders

(A total of 199,523,723.34 tokens held by the top 100 accounts from the total supply of 200,000,000.00 token)

Rank Address

Quantity (Token)

Percentage

1	TrustSwap: Team Finance Security	133,800,000	66.9000%
2	Null: 0x000dEaD	35,100,000	17.5500%
3	0xa1e307f48b94739b2680b65caa2d00c7ce310b35	22,522,013.44	11.2610%
4	0xd91e9f37a4a667db1ccc1249e8679331b280da9c	2,445,714.005	1.2229%
5	0x6e1a95bfc89539237d5a7873c511fc2cd078fb5c	980,000	0.4900%
6	0x421e3d37060e6a417a4415474dca5f1b78ce8583	349,954	0.1750%
7	0x1a48d84daec6f0d6b70f10584538ca8e335e7053	299,954	0.1500%
8	0xc9b01b99c43fa49d81348cf66aca97325c52ed92	264,000	0.1320%
9	0x424a3217533757b9311aec7e68a0083cc61d9326	215,662	0.1078%
10	0x3d4ccf81cc7fc0450e8ebc585a68c344f809af43	200,000	0.1000%
11	0x07979fc81b189403a0dea7c853d33c1df1e010a6	180,000	0.0900%
12	0x93dbca1a11b5396c602e538e3c033eea316d7dde	135,000	0.0675%

13	0x176146efb323fa213ea33419a219035a115f56f5	100,000	0.0500%
14	0x70f0f3d360b2a9ac66b3c67d827f7549f1d486b5	100,000	0.0500%
15	0xa415bfc702eb2345f7a8396626379a11669497d3	100,000	0.0500%
16	0xe8939eb74d74fd17e3bc8aafaf678183bb08abcb	100,000	0.0500%
17	0x4a65955135b5ce961249d6ae66b474d98a57770c	100,000	0.0500%
18	0x30056d77b0a6fd20c439669d352afe1fa3e9bfcc	99,999	0.0500%
19	0xb6a7270cfaf6f6aa62583b0ad2327d3a417fb6bb	93,954	0.0470%
20	0xec68a74b2f85adb6f79a2d64f01f91b3979f5523	76,000	0.0380%

BOT Token Distribution

BOT Contract Overview

Time Series: Token Contract Overview

Mon 23, Aug 2021 - Sat 9, Jul 2022

Token Contract 0x29E3cBDd0375e17cA94677790779EB0A87BefbCC (BOT)

Source: BscScan.com

Transfer Amount -•- Transfers Count --- Unique Senders --- Total Uniques --- Unique Receivers

+[Int] IERC20

- -[Ext] totalSupply
- -[Ext] balanceOf
- -[Ext] transfer #
- -[Ext] allowance
- -[Ext] approve #
- -[Ext] transferFrom #

+[Lib] SafeMath

- -[Int] add
- -[Int] sub
- -[Int] sub
- -[Int] mul
- -[Int] div
- -[Int] div
- -[Int] mod
- -[Int] mod

+Context

-[Int] _msgSender

-[Int] _msgData

+[Lib] Address

- -[Int] isContract
- -[Int] sendValue #
- -[Int] functionCall #
- -[Int] functionCall #
- -[Int] functionCallWithValue #
- -[Int] functionCallWithValue #
- -[Pvt] _functionCallWithValue #

+Ownable (Context)

- -[Pub] < Constructor> #
- -[Pub] owner
- -[Pub] renounceOwnership #
 - modifiers: onlyOwner
- -[Pub] transferOwnership #
- modifiers: onlyOwner
- -[Pub] getUnlockTime
- -[Pub] lock #

- modifiers: onlyOwner
- -[Pub] unlock #
- +[Int] IUniswapV2Factory -[Ext] feeTo
 - -[Ext] feeToSetter

- -[Ext] removeLiquidity #
- -[Ext] addLiquidityETH (\$)
- -[Ext] addLiquidity #
- -[Ext] WETH
- -[Ext] factory
- +[Int] IUniswapV2Router01
- -[Ext] setFeeTo # - [Ext] setFeeToSetter #
- -[Ext] createPair #
- -[Ext] allPairsLength
- -[Ext] allPairs
- -[Ext] getPair

- - -[Ext] removeLiquidityETH #
 - -[Ext] removeLiquidityWithPermit #
 - -[Ext] removeLiquidityETHWithPermit #
 - -[Ext] swapExactTokensForTokens #
 - -[Ext] swapTokensForExactTokens #
 - -[Ext] swapExactETHForTokens (\$)
 - -[Ext] swapTokensForExactETH #
 - -[Ext] swapExactTokensForETH #
 - -[Ext] swapETHForExactTokens (\$)
 - -[Ext] quote
 - -[Ext] getAmountOut
 - -[Ext] getAmountIn
 - -[Ext] getAmountsOut
 - -[Ext] getAmountsIn
- +[Int] IUniswapV2Router02 (IUniswapV2Router01)
 - -[Ext] removeLiquidityETHSupportingFeeOnTransferTokens #
 - -[Ext] removeLiquidityETHWithPermitSupportingFeeOnTransferTokens #
 - -[Ext] swapExactTokensForTokensSupportingFeeOnTransferTokens #
 - -[Ext] swapExactETHForTokensSupportingFeeOnTransferTokens (\$)
 - -[Ext] swapExactTokensForETHSupportingFeeOnTransferTokens #

+Token (Context, IERC20, Ownable)

- -[Pub] < Constructor>#
- -[Pub] name
- -[Pub] symbol
- -[Pub] decimals
- -[Pub] totalSupply
- -[Pub] balanceOf
- -[Pub] transfer #
- -[Pub] allowance
- -[Pub] approve #
- -[Pub] transferFrom #
- -[Pub] increaseAllowance #
- -[Pub] decreaseAllowance #
- -[Pub] isExcludedFromReward
- -[Pub] totalFees
- -[Pub] deliver #
- -[Pub] reflectionFromToken
- -[Pub] tokenFromReflection
- -[Pub] excludeFromReward #
- modifiers: onlyOwner
- -[Ext] includeInReward #
 - modifiers: onlyOwner
- -[Pub] excludeFromFee #
- modifiers: onlyOwner
- -[Pub] includeInFee #
- modifiers: onlyOwner
- -[Ext] setAllFeePercent #
- modifiers: onlyOwner
- -[Pub] buyBackUpperLimitAmount
- -[Ext] setBuybackUpperLimit #
 - modifiers: onlyOwner
- -[Ext] setMaxTxPercent #
 - modifiers: onlyOwner
- -[Ext] setMaxWalletPercent #
 - modifiers: onlyOwner
- -[Pub] setSwapAndLiquifyEnabled #
- modifiers: onlyOwner
- -[Ext] setFeeWallet #

- modifiers: onlyOwner
- -[Ext] <Fallback>(\$)
- -[Pvt] _reflectFee #
- -[Pvt] _getValues
- -[Pvt] _getTValues
- -[Pvt] _getRValues
- -[Pvt] _getRate
- -[Pvt] _getCurrentSupply
- -[Pvt] _takeLiquidity #
- [Pvt] calculateTaxFee
- -[Pvt] calculateLiquidityFee
- [Pvt] removeAllFee #
- [Pvt] restoreAllFee #
- -[Pub] isExcludedFromFee
- -[Pvt] _approve #
- -[Pvt] _transfer #
- -[Pvt] swapAndLiquify #
- modifiers: lockTheSwap
- -[Pvt] buyBackTokens #
- modifiers: lockTheSwap
- -[Pvt] swapTokensForBNB #
- -[Pvt] swapBNBForTokens #
- -[Pvt] addLiquidity #
- -[Pvt] _tokenTransfer #
- -[Pvt] _transferStandard #
- -[Pvt] _transferToExcluded #
- -[Pvt] _transferFromExcluded #
- -[Pvt] _transferBothExcluded #
- [Pvt] _tokenTransferNoFee #
- -[Pub] recoverBEP20 #
 - modifiers: onlyOwner
- (\$) = payable function# = non-constant function

Issues Checking Status

No.	Title	Status
1.	Compiler error	Passed
2.	Missing Input Validation	Passed
3.	3. Race conditions and Reentrancy. Cross-function race conditions.	
4.	Possible delays in data delivery	Passed

- 5. Oracle calls.
- 6. Timestamp dependence.
- 7. Integer Overflow and Underflow
- 8. DoS with Revert.
- 9. DoS with block gas limit.
- 10. Methods execution permissions.
- 11. Economy model of the contract.
- 12. Private use data leaks.
- 13. Malicious Event log.
- 14. Scoping and Declarations.
- 15. Uninitialized storage pointers.

Passed Passed Passed Passed Medium Issue Passed Passed Passed

Passed

Passed

Passed

Passed

Passed

Passed

- 16. Arithmetic accuracy.
- 17. Design Logic.
- 18. Safe Open Zeppelin contracts implementation and usage.
- 19. Incorrect Naming State Variable
- 20. Too old version

Severity Definitions

Risk Level	Description
Critical	Critical vulnerabilities are usually straightforward to exploit and can lead to assets loss or data manipulations.
High	High-level vulnerabilities are difficult to exploit; however, they also have a significant impact on smart contract execution, e.g., public access to crucial functions
Medium	Medium-level vulnerabilities are important to fix; however, they can't lead to assets loss or data manipulations.
Low	Low-level vulnerabilities are mostly related to outdated, unused, etc. code snippets that can't have a significant impact on execution.

Security Issues

Critical Severity Issues

No critical severity issue found.

⊘ High Severity Issues

No high severity issue found.

Medium Severity Issues \bigcirc

One Medium severity issues found.

1. Out of gas

• Issue:

• The function includeInReward() uses the loop to find and remove addresses from the _excluded list. Function will be aborted with OUT_OF_GAS exception if there will be a long excluded addresses list.

• The function _getCurrentSupply also uses the loop for evaluating total supply. It also could be aborted with OUT_OF_GAS exception if there will be a long excluded addresses list.

Recommendation

Check that the excluded array length is not too big.

- Low Severity Issues \bigcirc

No low severity issue found.

Notes:

• There is sending contract balance to dead address instead of real burn, using decreasing total supply

Centralization

Owner privileges (In the period when the owner is not renounced) :

- BOT Contract:
 - Owner can change fees.
 - Owner can change the maximum transaction amount and maximum wallet amount.
 - Owner can change buyBackUpperLimit.
 - Owner can exclude from the fee.
 - Owner can change fee wallet.
 - Owner can withdraw ERC tokens except native.
 - Owner can lock and unlock. By the way, using these functions the owner could retake privileges even after the ownership was renounced.

Conclusion

Smart contract contains medium severity issues! Liquidity pair contract's security is not checked due to out of scope.

HackSafe note: Please check the disclaimer above and note, the audit makes no statements or warranties on business model, investment attractiveness or code sustainability. The report is provided for the only contract mentioned in the report and does not include any other

potential contracts deployed by Owner.

