
Security Status

Smart Contract
Security Audit Report

ZUKI MOBA
March 2023

www.hacksafe.io

Audit Details

Page No. 02 www.hacksafe.io

Audited project
ZUKI MOBA

Deployer address
0xd8cb3a8c26e48564f3de55ff8cef41c71012a94e

Client contacts
ZUKI MOBA Team

Website
https://zukimoba.com/

Blockchain
Binance smart chain

Disclaimer

Page No. 03 www.hacksafe.io

Procedure

Step 1 - In-Depth Manual Review
Manual line-by-line code reviews to ensure the logic behind each function is sound and safe

from various attack vectors. This is the most important and lengthy portion of the audit

process (as automated tools often cannot find the nuances that lead to exploits such as flash

loan attacks).

Step 2 - Automated Testing
Simulation of a variety of interactions with your Smart Contract on a test blockchain

leveraging a combination of automated test tools and manual testing to determine if any

security vulnerabilities exist.

Step 3 – Leadership Review
The engineers assigned to the audit will schedule meetings with our leadership team to

review the contracts, any comments or findings, and ask questions to further apply

adversarial thinking to discuss less common attack vectors.

Step 4 - Resolution of Issues
Consulting with the team to provide our recommendations to ensure the code's security and

optimize its gas efficiency, if possible. We assist project team's in resolving any outstanding

issues or implementing our recommendations.

Step 5 - Published Audit Report
Boiling down results and findings into an easy-to-read report tailored to the project. Our

audit reports highlight resolved issues and any risks that exist to the project or its users, along

with any remaining suggested remediation measures. Diagrams are included at the end of

each report to help users understand the interactions which occur within the project.

Page No. 04 www.hacksafe.io

Background

HackSafe was commissioned by ZUKI MOBA to perform an audit of smart contracts:

https://bscscan.com/token/0xE81257d932280AE440B17AFc5f07C8A110D21432#code

The purpose of the audit was to achieve the following:

The information in this report should be understand the risk exposure of the smart contract,

and as a guide to improve the security posture of the smart contract by remediating the

issues that were identified.

Page No. 05 www.hacksafe.io

Ensure that the smart contract functions as intended.

Identify potential security issues with the smart contract.

Contract Details

: Token

: Gaming

: 0xE81257d932280AE440B17AFc5f07C8A110D21432

Token contract details for 29.03.2023

Contract name

Type

Contract address

Page No. 06 www.hacksafe.io

Compiler version

owner address

Contract deployer

address

Token holders

Transactions count

: v0.7.4+commit.3f05b770

: 0x00

Token ticker

Decimals

Total supply

: ZUKI

: 18

: 1,000,000,000

: 0xd8cb3a8c26e48564f3de55ff8cef41c71012a94e

: 25,279

: 388,609

Audit Summary

Insecure Poor secured Well-securedSecure

According to the standard audit assessment, Customer`s solidity smart contracts are

“Secure”. This token contract does not contain owner control, which do make it fully

decentralized.

We used various tools like Slither, Mythril and Remix IDE. At the same time this finding is

based on critical analysis of the manual audit. All issues found during automated analysis

were manually reviewed and applicable vulnerabilities are presented in the issues

checking status.

We found 0 critical, 0 high, 1 medium and 0 low.

You are here

Page No. 07 www.hacksafe.io

 ZUKI MOBA TOKEN Distribution

ZUKI MOBA Token Top 20 Token Holders

ZUKI MOBA TOKEN Distribution

 ZUKI MOBA Contract Overview

Page No. 08 www.hacksafe.io

Contract functions details

-[Ext] feeTo

-[Ext] feeToSetter

-[Ext] getPair

-[Ext] allPairs

-[Ext] allPairsLength

-[Ext] createPair #

-[Ext] setFeeTo #

-[Ext] setFeeToSetter #

-[Ext] name

-[Ext] symbol

-[Ext] decimals

-[Ext] totalSupply

-[Ext] balanceOf

-[Ext] allowance

-[Ext] approve #

-[Ext] transfer #

-[Ext] transferFrom #

-[Ext] DOMAIN_SEPARATOR

-[Ext] PERMIT_TYPEHASH

-[Ext] nonces

-[Ext] permit #

-[Ext] MINIMUM_LIQUIDITY

-[Ext] factory

-[Ext] token0

-[Ext] token1

-[Ext] getReserves

-[Ext] price0CumulativeLast

-[Ext] price1CumulativeLast

-[Ext] kLast

-[Ext] burn #

-[Ext] swap #

-[Ext] skim #

-[Ext] sync #

-[Ext] initialize #

+[Int] IUniswapV2Factory

+[Int] IUniswapV2Pair

+[Int] IUniswapV2Router01

Contract functions details

-[Ext] factory

-[Ext] WETH

-[Ext] addLiquidity #

-[Ext] addLiquidityETH ($)

-[Ext] removeLiquidity #

-[Ext] removeLiquidityETH #

-[Ext] removeLiquidityWithPermit #

-[Ext] removeLiquidityETHWithPermit #

-[Ext] swapExactTokensForTokens #

-[Ext] swapTokensForExactTokens #

-[Ext] swapExactETHForTokens ($)

-[Ext] swapTokensForExactETH #

-[Ext] swapExactTokensForETH #

-[Ext] swapETHForExactTokens ($)

-[Ext] quote - [Ext] getAmountOut

-[Ext] getAmountIn

-[Ext] getAmountsOut

-[Ext] getAmountsIn

-[Ext] removeLiquidityETHSupportingFeeOnTransferTokens #

-[Ext] removeLiquidityETHWithPermitSupportingFeeOnTransferTokens #

-[Ext] swapExactTokensForTokensSupportingFeeOnTransferTokens #

-[Ext] swapExactETHForTokensSupportingFeeOnTransferTokens ($)

-[Ext] swapExactTokensForETHSupportingFeeOnTransferTokens #

-[Int] _msgSender

-[Int] _msgData

-[Int] _initialize #

-[Pub] name

-[Pub] symbol

-[Pub] decimals

-[Pub] totalSupply

-[Pub] balanceOf

-[Pub] transfer #

-[Pub] allowance

+[Int] IUniswapV2Router02 (IUniswapV2Router01)

+Context

+ERC20 (Context, IERC20, Ownable)

Contract functions details

-[Pub] approve #

-[Pub] transferFrom #

-[Pub] increaseAllowance #

-[Pub] decreaseAllowance #

-[Int] _transfer #

-[Int] _mint #

-[Int] _burn #

-[Int] _approve #

-[Int] _setupDecimals #

-[Int] _beforeTokenTransfer #

-[Pub] mint #

 - modifiers: onlyOwner

-[Pub] enableMint #

 - modifiers: onlyOwner

-[Pub] modifyWhiteListSender #

 - modifiers: onlyOwner

-[Pub] isExcludedFromFee

-[Pub] modifyWhiteListReceiver #

 - modifiers: onlyOwner

-[Pub] isExcludedToFee

-[Pub] modifyBlackList #

 - modifiers: onlyOwner

-[Pub] isBlackList

-[Ext] setAntiBot #

 - modifiers: onlyOwner

-[Ext] setSwapWhiteList #

 - modifiers: onlyOwner

-[Pub] transferToken #

 - modifiers: onlyOwner

-[Pub] modifyWhiteListBot #

 - modifiers: onlyOwner

-[Pub] isExcludedFromBot

-[Pub] changeFeeWallet #

 - modifiers: onlyOwner

-[Pub] changeFee #

 - modifiers: onlyOwner

-[Pub] modifyWhiteListPool #

 - modifiers: onlyOwner

Contract functions details

-[Pub] isExcludedFromPool

-[Ext] totalSupply

-[Ext] balanceOf

-[Ext] transfer #

-[Ext] allowance

-[Ext] approve #

-[Ext] transferFrom #

-[Pub] <Constructor > #

-[Pub] owner

-[Pub] renounceOwnership #

 - modifiers: onlyOwner

-[Pub] transferOwnership #

 - modifiers: onlyOwner

-[Pub] geUnlockTime

-[Pub] lock #

 - modifiers: onlyOwner

-[Pub] unlock #

-[Int] tryAdd

-[Int] trySub

-[Int] tryMul

-[Int] tryDiv

-[Int] tryMod

-[Int] add

-[Int] sub

-[Int] mul

-[Int] div

-[Int] mod

-[Int] sub

-[Int] div

-[Int] mod

+[Int] IERC20

+Ownable (Context)

+[Lib] SafeMath

-[Pub] <Constructor> #

-[Pub] burn #

+Token (ERC20)

Contract functions details

($) = payable function
= non-constant function

Page No. 09 www.hacksafe.io

-[Int] _transfer #

-[Ext] <Fallback> ($)

Issues Checking Status

Status

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Medium Issue

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Title

Compiler error

Missing Input Validation

Race conditions and Reentrancy. Cross-function race conditions.

Possible delays in data delivery

Oracle calls.

Timestamp dependence.

Integer Overflow and Underflow

DoS with Revert.

DoS with block gas limit.

Methods execution permissions.

Economy model of the contract.

Private use data leaks.

Malicious Event log.

Scoping and Declarations.

Uninitialized storage pointers.

Arithmetic accuracy.

Design Logic.

Safe Open Zeppelin contracts implementation and usage.

Incorrect Naming State Variable

Too old version

No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Passed

Page No. 10 www.hacksafe.io

Severity Definitions

Critical vulnerabilities are usually straightforward to exploit and can

lead to assets loss or data manipulations.

Risk Level Description

Critical

High

Medium

Low

High-level vulnerabilities are difficult to exploit; however, they also

have a significant impact on smart contract execution, e.g., public

access to crucial functions

Medium-level vulnerabilities are important to fix; however, they

can't lead to assets loss or data manipulations.

Low-level vulnerabilities are mostly related to outdated, unused, etc.

code snippets that can't have a significant impact on execution.

Page No. 11 www.hacksafe.io

Security Issues

Critical Severity Issues

No critical severity issue found.

High Severity Issues

No high severity issue found.

Medium Severity Issues

One medium severity issue found.

Low Severity Issues

No low severity issue found.

Page No. 12 www.hacksafe.io

Issue:

Recommendation

Notes: • Transfer function may have feeless transfer in else block like in
transferFrom function

• The function modifyWhiteListSender(), modifyWhiteListReceiver(), modifyBlackList(),

modifyWhiteListBot(), modifyWhiteListPool() uses the loop to iterate through lists from the

argument. Functions will be aborted with OUT_OF_GAS exception if there will be a long

addresses list in the function argument.

Check that the arrays’ length is not too big.

1. Out of gas

Centralization

Owner Privileges :

ZUKI MOBA Contract:

Page No.13 www.hacksafe.io

• Owner can mint.

• Owner can enable/disable mint.

• Owner can enable/disable antibot and swap whitelist.

• Owner can change fee value and wallet address.

• Owner can lock and unlock. By the way, using these functions the owner could

retake privileges even after the ownership was renounced.

Conclusion

HackSafe note: Please check the disclaimer above and note, the audit makes no statements

or warranties on business model, investment attractiveness or code sustainability. The report

is provided for the only contract mentioned in the report and does not include any other

potential contracts deployed by Owner.

Smart contract contains medium severity issues! The further transfer and operations with the

fund raised are not related to this particular contract.

Page No. 14 www.hacksafe.io

